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Abstract
We demonstrate explicitly the completeness of photon-added coherent
states (PACSs), introduced by Agarwal and Tara (Agarwal G S and Tara K
1991 Phys. Rev. A 43 492) and defined, up to normalization, by (â†)M |z〉,M =
0, 1, 2, . . . , where â† is the boson creation operator and |z〉 are conventional
Glauber–Klauder coherent states. We find the analytical form of the positive
weight function in their resolution of unity by solving the associated Stieltjes
power-moment problem. We furnish an example of generation of another set
of PACSs which are complete.

PACS numbers: 0230, 4250A

The coherent states, denoted by |z〉, are special linear combinations of eigenfunctions |n〉
of a Hermitian operator Ĥ , usually the Hamiltonian, such that all of their coefficients are
parametrized with a single complex number z.

They have become standard tools in many fields such as condensed matter, quantum
optics and field theory [1]. Such states are usually constructed according to a minimal
set of fundamental requirements [1, 2]: (i) normalizability, (ii) continuity in label z and
(iii) completeness, or the resolution of unity. This last condition follows from the existence of
a positive weight functionW(|z|2) such that for d2z ≡ d(Re z) d(Im z) the following equations
are valid: ∫ ∫

C

d2z |z〉W(|z|2) 〈z| = I =
∑
n

|n〉〈n| (1)

where the index n runs either over a whole spectrum of Ĥ or over some subset of it, depending
on the character of state |z〉. The completeness relations (1) are usually difficult to satisfy. As
a consequence the family of truly coherent states is still small in number. Once the weight
functionW(|z|2) is known the states |z〉 can be used, amongst other applications, as a (generally
non-orthogonal) basis to obtain the bounds for the finite-temperature partition function through
the Lieb–Berezin inequalities [3] (β = 1

kBT
):∫ ∫

C

d2zW(|z|2) exp (−β 〈z|Ĥ |z〉) � Tr e−β Ĥ . (2)
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Recently progress has been achieved by finding the weight functions for some specific choices
of the states |z〉 (see [4–6]).

The purpose of this paper is to demonstrate the completeness of an important special
family of states constructed by adding photons to a conventional Glauber–Klauder coherent
state |z〉 [1]. This last state is defined for the Hamiltonian of the linear harmonic oscillator
Ĥ0 = â†â (with [â, â†] = 1, Ĥ0|n〉 = n|n〉, 〈n|n′〉 = δn,n′ , n = 0, 1, . . . ,∞) as

|z〉 = e− |z|2
2 exp (zâ†)|0〉 (3)

= e− |z|2
2

∞∑
n=0

zn√
n!

|n〉 (4)

where in equation (3), |0〉 is the ground state of Ĥ0 (the vacuum). The photon-added states
were introduced by Agarwal and Tara [7], who also have exhaustively examined their non-
classical fluctuation properties. The experimental realizations and applications of these states
were objects of extensive studies recently [8, 9].

The normalized photon-added coherent state (PACS) reads [7]

|z;M〉 = N − 1
2

M (|z|2) (â†)M |z〉 (5)

= [M!LM(−|z|2)]− 1
2 (â†)M |z〉 −→

{
|z〉 if M −→ 0, z = const

|M〉 if M = const, z −→ 0
(6)

where LM(y) is the Mth Laguerre polynomial. Observe that LM(−y) is always positive.
Equation (6) means that |z;M〉 interpolates between the coherent state |z〉 and the Fock or
number state |M〉. The development of the PACS in terms of number states |n〉 follows from
equations (4) and (6):

|z;M〉 = [e|z|2M!LM(−|z|2)]− 1
2 (â†)M

∞∑
n=0

(â†)nzn

n!
|0〉 (7)

= [e|z|2M!LM(−|z|2)]− 1
2

∞∑
n=0

√
(n + M)!

n!
zn|n + M〉. (8)

For fixed z the state |z;M〉 is normalized for any finite M . We note that |z;M〉 is a linear
combination of all the number states starting with n = M; i.e. the first M number states,
n = 0, 1, . . . ,M − 1, are absent from the wavefunction |z;M〉. The unity operator in this
space is to be written as

IM =
∞∑

n=M
|n〉〈n| =

∞∑
n=0

|n + M〉〈n + M| (9)

and the resolution of unity reads∫ ∫
C

d2z |z;M〉WM(|z|2) 〈z;M| = IM =
∞∑
n=0

|n + M〉〈n + M|. (10)

To obtain the conditions for the sought-for positive functionWM(|z|2)we substitute equation (8)
into (10), use z = |z|ei θ and perform the θ integration, thus projecting out the off-diagonal
terms |n〉〈n′|. One is then left with the conditions, for x ≡ |z|2,

π
(n + M)!

(n!)2

∫ ∞

0
xn

[
WM(x)

ex M!LM(−x)
]

dx = 1 n = 0, 1, . . . ,∞. (11)



On the completeness of photon-added coherent states 2861

Introducing the function W̃M(x) ≡ π WM(x)

ex LM(−x) equation (11) boils down to the infinite set of

equations for W̃M(x):∫ ∞

0
xn W̃M(x) dx = M!

(n!)2

(n + M)!
≡ ρM(n) n = 0, 1, . . . ,∞ (12)

which is the classical Stieltjes power-moment problem [10] for W̃M(x), with the set of moments
ρM(n). The task of proving the existence of a positive solution W̃M(x) is prohibitively difficult
as it amounts to proving the positivity of two special series of all upper-left-corner Hankel–
Hadamard determinants formed out of ρM(n) [10].

We shall overcome this difficulty by constructing by auxiliary means the solution of
equations (12) and observing that it is positive. The actual approach to solve equations (12)
for W̃M(x) is to extend the natural values of n to complex s such that n −→ s − 1, and
then to observe that equations (12) can be interpreted as the Mellin transform [11], defined as
M[f (x); s] = ∫ ∞

0 xs−1f (x) dx ≡ f ∗(s), and consequently the inverse Mellin transform is
M−1[f ∗(s); x] = f (x).

This identification has been recently applied to find solutions of a number of moment
problems arising in connection with different kinds of generalized coherent state [4–6, 12].

The above reparametrization allows one to rewrite equation (12) as

M[W̃M(x); s] =
∫ ∞

0
xs−1W̃M(x) dx = M!

�(s)2

�(s + M)
(13)

≡ M!�

[
s, s

s + M

]
Re s > 0. (14)

From equation (14) the solution of equation (12) is formally given by

W̃M(x) = M! M−1

[
�

[
s, s

s + M

]
; x

]
. (15)

This last inverse Mellin transform is known, compare the formula 4(1) on p 285 of [13] or the
formula 8.4.46.7 on p 716 of [14]; the weight function W̃M(x) is equal to

W̃M(x) = M! e−x �(M, 1; x) (16)

where �(a, c; x) is Tricomi’s confluent hypergeometric function [14]. As �(0, 1; x) = 1,
the case M = 0 reproduces the known weight function ∼e−x of the conventional coherent
state |z〉 [1]. W̃M(x) can be expressed by known functions in several ways. We shall use here
Tricomi’s integral [13],

�(a, c; x) = 1

�(a)

∫ ∞

0

e−xt ta−1

(1 + t)1+a−c dt Re a,Re x > 0 (17)

which with equation (16) yields

W̃M(x) = M e−x
∫ ∞

0

e−xt tM−1

(1 + t)M
dt M � 1, x � 0 (18)

which is a positive function. We stress that, due to the restriction on a in equation (17), the
expression (18) for W̃M(x) applies only for M � 1.

In equation (18) we introduce a new variable y = 1 + t , expand the resulting binomial and
integrate term by term. We obtain finally

W̃M(x) = M

M−1∑
p=0

(−1)p
(
M − 1
p

)
Ep+1(x) M � 1, x > 0 (19)
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Figure 1. The weight function W̃M(x) of equation (19) versus x for different values of M .

and

WM(x) = M

π
ex LM(−x)

M−1∑
p=0

(−1)p
(
M − 1
p

)
Ep+1(x) M � 1, x > 0. (20)

In equations (19) and (20), Ek(z) is a generalized exponential integral of order k [15] defined
as Ek(z) = ∫ ∞

1 e−zt /tk dt (z > 0).
In figures 1 and 2 we have displayed the functions W̃M(x) and WM(x) respectively, for

different values of M . It is seen that W̃M(x) has an (integrable) singularity at x = 0, whereas
WM(x) is not integrable as for M = const, limx−→∞ WM(x) = 1/π , which is equal to W(x)

for conventional coherent states [1]. This last result signifies that in |z;M〉 of equation (8) in
the limit |z|2 −→ ∞ the missing states with n = 0, 1, . . . ,M − 1 are of no importance as
then only the states with n � M have a dominant contribution.

The form of the ρM(n) of equation (12) permits one to verify the unicity of the solution
W̃M(x). To this end we apply the Carleman criterion [10]: if S = ∑∞

n=0[ρM(n)]−
1

2n diverges,
then the solution of the moment problem is unique. The substitution of ρM(n) to S shows that
indeed S = ∞, thus confirming that W̃M(x) is a unique solution for the set of moments ρM(n)
of equation (12). We conclude that the PACSs are a well defined family of coherent states as
they fulfil the minimal set of requirements alluded to above.

The general structure of the expansion (7) and of the associated moment problem (12)
suggest a prescription to generate the PACSs which are different from |z;M〉 of equation (8).
We sketch one such case here. We are asking the following question: can one choose a quantum
state |z〉′ �= |z〉 such that by adding M photons to it we end up with |z;M〉′ �= |z;M〉 such
that |z;M〉′ are a complete set, in a subspace where all the states |0〉, . . . , |M − 1〉 are absent?
Clearly this means that |z〉′ is so tailored that the moment problem generated by |z;M〉′ has a
positive weight function. Note that the set of |z〉′ may or may not be complete. A case in point
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Figure 2. The weight function WM(x) of equation (20) versus x for different values of M .

is an unnormalized (but normalizable) state |z〉′ defined by

|z〉′ =
∞∑
n=0

zn

n!
|n〉. (21)

This choice of |z〉′ is perhaps the simplest extension of conventional coherent states of
equation (4), retaining their holomorphic character. Many other extensions are possible such
as

∑∞
n=0

zn

(n!)2 |n〉,
∑∞

n=0
zn

(n!)
5
2
|n〉 etc. Every state of this type will lead to a certain moment

problem (compare equation (29) below) which should be investigated separately.
We construct now a modified normalized PACS, using equation (21), as

|z;M〉′ = [M! N ′
M(|z|2)]−

1
2 (â†)M |z〉′ (22)

= [N ′
M(|z|2)]−

1
2

∞∑
n=0

√
(n + M)!

M!

zn

(n!)
3
2

|n + M〉 (23)

whose normalization is (x ≡ |z|2)

M! N ′
M(x) =

∞∑
n=0

(n + M)!

(n!)3
xn = 1F2(1 + M; 1, 1; x) (24)

with particular cases

N ′
1(x) = I0(2

√
x) +

√
x I1(2

√
x) (25)

N ′
2(x) = 2

((
1 +

x

2

)
I0(2

√
x) +

3

2
I1(2

√
x)

)
(26)

N ′
3(x) = 1

6 ((6 + 7x) I0(2
√
x) +

√
x (11 + x) I1(2

√
x)) (27)
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Figure 3. The weight function W̃ ′
M(x) of equation (34) versus x for different values of M .

etc, where 1F2(a; b, c; x) is the hypergeometric function and I0 and I1 are modified Bessel
functions of first kind. We plug now the normalized states |z;M〉′ into their resolution of unity
condition: ∫ ∫

C

d2z |z;M〉′ W ′
M(|z|2) ′〈z;M| = IM (28)

and obtain, for W̃ ′
M(x) = π

W ′
M(x)

N ′
M(x)

, the following Stieltjes power-moment problem:∫ ∞

0
xn W̃ ′

M(x) dx = M!
(n!)3

(n + M)!
n = 0, 1, . . . ,∞. (29)

The function W̃ ′
M(x) is positive. This can be seen by rewriting (29) as

M[W̃ ′
M(x); s] = M!

�(s)2

�(s + M)
�(s) (30)

which, through the use of the convolution property of the inverse Mellin transform [11]

M−1[f ∗(s) · g∗(s); x] =
∫ ∞

0

1

t
f

(x
t

)
g(t) dt (31)

gives

W̃ ′
M(x) = M!

∫ ∞

0

e−(t+ x
t
)

t
�(M, 1; t) dt (32)

which is an integral of a positive function. A way to obtain a more explicit form of W̃ ′
M(x) is

to relate it to Meijer’s G-function Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
through [13]

M
[
M!G3,0

1,3

(
x

∣∣∣∣ M

0, 0, 0

)
; s

]
= M!

�(s)3

�(s + M)
≡ M!�

[
s, s, s

s + M

]
. (33)
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Figure 4. The weight function W ′
M(x) of equation (28) versus x for different values of M .

Apparently G3,0
1,3

(
x

∣∣∣∣ M

0, 0, 0

)
cannot be simply expressed by known functions but its series

representation is known, yielding

W̃ ′
M(x) = M!

2

∞∑
n=0

(−1)n[(ln(x))2 + π2 + 2 ln(x)(ψ(M − n)− 3ψ(n + 1))

−3ψ(1)(n + 1) + ψ(M − n)2 − 6ψ(M − n)ψ(n + 1)

+9ψ(n + 1)2 − ψ(1)(M − n)]
xn

�(M − n)�(n + 1)3
(34)

where ψ(x) is the digamma function and ψ(1)(x) is the polygamma function of order one
(compare [15]). In equation (34) the factor ∼[�(M − n)]−1 automatically truncates the series
multiplying [ln(x)]2 + π2 and simplifies the ψ-terms. W̃ ′

M(x) display a singularity at x = 0
as the functions W̃M(x) of equation (16) do. The Carleman criterion applied to equation (29)
again indicates the unique character of the solution of equation (34). The weight functions
W̃ ′
M(x) and W ′

M(x) are represented in figures 3 and 4 respectively, for different values of M .
We conclude that the modified PACSs of equation (23) form a complete set.

A legitimate question is how to construct photon-substracted complete coherent states by
acting with the boson annihilation operator on some state |z̃〉, thus producing the normalized

state |z̃;M〉 = Ñ − 1
2

M (|z|2) (â)M |z̃〉. It is clear that the state |z̃〉 must be different from |z〉 of
equation (4) as this last state is an eigenstate of (â)M , (â)M |z〉 = zM |z〉 and thus the resulting
|z̃;M〉 would not be normalizable at z = 0. In fact the requirement that |z̃;M〉 constitute a
complete set imposes quite stringent constraints on the possible form of |z̃〉 and this will be a
subject of a separate study.
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